Goto

Collaborating Authors

 Anchorage Municipality


The study of short texts in digital politics: Document aggregation for topic modeling

arXiv.org Artificial Intelligence

Statistical topic modeling is widely used in political science to study text. Researchers examine documents of varying lengths, from tweets to speeches. There is ongoing debate on how document length affects the interpretability of topic models. We investigate the effects of aggregating short documents into larger ones based on natural units that partition the corpus. In our study, we analyze one million tweets by U.S. state legislators from April 2016 to September 2020. We find that for documents aggregated at the account level, topics are more associated with individual states than when using individual tweets. This finding is replicated with Wikipedia pages aggregated by birth cities, showing how document definitions can impact topic modeling results.


Robot disguised as a coyote or fox will scare wildlife away from runways at Alaska airport

FOX News

Fox News Flash top headlines are here. Check out what's clicking on Foxnews.com. ANCHORAGE, Alaska (AP) -- A headless robot about the size of a labrador retriever will be camouflaged as a coyote or fox to ward off migratory birds and other wildlife at Alaska's second largest airport, a state agency said. The Alaska Department of Transportation and Public Facilities has named the new robot Aurora and said it will be based at the Fairbanks airport to "enhance and augment safety and operations," the Anchorage Daily News reported. The transportation department released a video of the robot climbing rocks, going up stairs and doing something akin to dancing while flashing green lights.


Artificial intelligence could help air travelers save a bundle

#artificialintelligence

Researchers are using artificial intelligence to help airlines price ancillary services such as checked bags and seat reservations in a way that is beneficial to customers' budget and privacy, as well as to the airline industry's bottom line. When airlines began unbundling the costs of flights and ancillary services in 2008, many customers saw it as a tactic to quote a low base fare and then add extras to boost profits, the researchers said. In a new study, the researchers use unbundling to meet customer needs while also maximizing airline revenue with intelligent, individualized pricing models offered in real time as a customer shops. The results of the study will be presented at the 2019 Conference on Knowledge Discovery and Data Mining on Aug. 6 in Anchorage, Alaska. Airlines operate on very slim margins, the researchers said.


Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information

arXiv.org Machine Learning

Predicting when and where events will occur in cities, like taxi pick-ups, crimes, and vehicle collisions, is a challenging and important problem with many applications in fields such as urban planning, transportation optimization and location-based marketing. Though many point processes have been proposed to model events in a continuous spatio-temporal space, none of them allow for the consideration of the rich contextual factors that affect event occurrence, such as weather, social activities, geographical characteristics, and traffic. In this paper, we propose \textsf{DMPP} (Deep Mixture Point Processes), a point process model for predicting spatio-temporal events with the use of rich contextual information; a key advance is its incorporation of the heterogeneous and high-dimensional context available in image and text data. Specifically, we design the intensity of our point process model as a mixture of kernels, where the mixture weights are modeled by a deep neural network. This formulation allows us to automatically learn the complex nonlinear effects of the contextual factors on event occurrence. At the same time, this formulation makes analytical integration over the intensity, which is required for point process estimation, tractable. We use real-world data sets from different domains to demonstrate that DMPP has better predictive performance than existing methods.


Gaussian Process Regression for Arctic Coastal Erosion Forecasting

arXiv.org Machine Learning

Arctic coastal morphology is governed by multiple factors, many of which are affected by climatological changes. As the season length for shorefast ice decreases and temperatures warm permafrost soils, coastlines are more susceptible to erosion from storm waves. Such coastal erosion is a concern, since the majority of the population centers and infrastructure in the Arctic are located near the coasts. Stakeholders and decision makers increasingly need models capable of scenario-based predictions to assess and mitigate the effects of coastal morphology on infrastructure and land use. Our research uses Gaussian process models to forecast Arctic coastal erosion along the Beaufort Sea near Drew Point, AK. Gaussian process regression is a data-driven modeling methodology capable of extracting patterns and trends from data-sparse environments such as remote Arctic coastlines. To train our model, we use annual coastline positions and near-shore summer temperature averages from existing datasets and extend these data by extracting additional coastlines from satellite imagery. We combine our calibrated models with future climate models to generate a range of plausible future erosion scenarios. Our results show that the Gaussian process methodology substantially improves yearly predictions compared to linear and nonlinear least squares methods, and is capable of generating detailed forecasts suitable for use by decision makers.


Training Effective Node Classifiers for Cascade Classification

arXiv.org Machine Learning

Cascade classifiers are widely used in real-time object detection. Different from conventional classifiers that are designed for a low overall classification error rate, a classifier in each node of the cascade is required to achieve an extremely high detection rate and moderate false positive rate. Although there are a few reported methods addressing this requirement in the context of object detection, there is no principled feature selection method that explicitly takes into account this asymmetric node learning objective. We provide such an algorithm here. We show that a special case of the biased minimax probability machine has the same formulation as the linear asymmetric classifier (LAC) of Wu et al (2005). We then design a new boosting algorithm that directly optimizes the cost function of LAC. The resulting totally-corrective boosting algorithm is implemented by the column generation technique in convex optimization. Experimental results on object detection verify the effectiveness of the proposed boosting algorithm as a node classifier in cascade object detection, and show performance better than that of the current state-of-the-art.